Chapter 7

Servo Controller Design

Servo controllers are a type of feedback controllers where the reference input
is a differentiable time-varying function, and the response follows the refer-
ence input quickly and accurately. Servo controllers are used in mechatronic
and robotic applications because of its fast tracking performance. In order
to achieve servo control capability, the control system should be designed
in frequency domain where reference input is represented by its frequency
components (Fourier transform) and the control system as a low pass filter.
The response is contributed by the low pass filtered frequency components of
the reference input. If the control system has a sufficient pass band so that
most of the reference frequency components pass through without attenua-
tion, then the response will be a close representation of the reference input.
Feedback controller design in frequency domain was pioneered by Bode [8].

7.1 Frequency Response

Frequency response of a plant is illustrated in Figure 7.1. The plant is rep-
resented by a series of blocks G(s) = G1(s)Ga(s)...Gy(s), and the reference
input is selected as a single frequency signal r(t) = Asinwt. As this signal
passes through the plant, each block changes its magnitude and phase. For
example, block (G1(s) changes the amplitude of the signal by introducing a
gain M, (jw) = |G1(jw)| and also adds phase ¢, (jw) = LG1(jw). After pass-
ing through all of the blocks the response appears as y(t) = AM sin (wt + ¢),
where M (jw) = |G(jw)| is the overall gain, and ¢(jw) = LG (jw)is the over-
all phase addition. Both gain and phase are frequency dependent. Gains of
successive blocks multiply whereas phase of successive bocks add together.
Therefore, the overall system gain is given by
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Figure 7.1: Magnitude and phase change as frequency w passes through the
system

M(jw) = TYM;(jw)
= I7|Gi(jw)| (7.1)
M(jw)dB = X¥[Gi(jw)|dB (7.2)

where |G;(jw)|dB = 20log|G;(jw)|dB. The net phase is given by

P(jw) = Xigi(jw)
= LGyi(jw) (7.3)

7.1.1 Gain and Phase of Common Blocks
Zeros and Poles at Origin

For a pole at origin there is s term in the denominator, and for a zero at
origin there is a s term in the numerator. The existence of an n number of
poles or zeros at origin is represented by s, where +n is for zeros and —n
is for poles. Therefore, the overall gain of n number of zeros or poles is

Gi(jw)] = w™"
|Gi(jw)|dB = £n20logwdB (7.4)

And, the overall phase addition by an n number of zeros or poles is
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/Gi(jw) = ZEntan™! <%>

= +90n’ (7.5)

Following MatLab code draws the gain and phase plots (Bode plots) for
a zero at origin as illustrated in Fig.7.2(a), and for a pole at origin as
illustrated in Fig.7.2(b). For a zero at origin, the gain increases by +20dB,
that is by 10 times when frequency increases by a factor of 10. For a pole
at origin, gain reduces by the same proportion. This change of 20dB change
per 10 times change in frequency is termed as 20dB/decade.

sys=tf([1 0],[1]); % for a zero at origin
%hsys=tf([1],[1 0]); % for a pole at origin
bode(sys); grid on;

First Order Block

First order block is a zero or a pole located at —a, and modeled by G;(s) =
(s+a)*!, where + sign represents a first order zero and —1 represents a first
order pole. The gain of a first order pole or zero for frequency w is given by

Gi(jw)| = 1w+ a)[*!
|Gi(jw)|dB = +20log(vw? + a?)dB (7.6)

And the phase addition for frequency w is given by

/Gi(jw) = £tan™? (f) (7.7)

a

From (7.6) the gain at 0 and a, the location of the zero or pole can be
determined as follows.

|G:(70)] = +20log V02 + a?

= 420logadB (7.8)
|Gi(ja)] = =£20logvz%+ a? = +20log/(2a?)dB
= 4(20loga + 20log v2)dB

+20logadB + 3dB (7.9)
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From (7.8) and (7.9), the gain change when frequency changes from Orad/s
to arad/s is 3dB. For a zero it is an amplification of signal, whereas for a
pole it is an attenuation. Figure 7.3 shows gain and phase lag for a zero at
s = —10 and the same for a pole at the same location. Following Matlab
code draws gain and phase plots of a first order block.

sys=tf([1 10],[1]1); % for a zero at -10
%sys=tf([1],[1 10]); % for a pole at -10
bode(sys); grid on;
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Bode Diagram
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Figure 7.2: Gain and phase plots (a) for a zero at origin, and (b) for a pole
at origin
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Bode Diagram
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Figure 7.3: Gain and phase plots of a first order block (a) for a zero s = —10,
and (b) for a pole at s = —10
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Second Order Blocks

The generic second order block is represented by G(s) = (s2+2¢w,s+w?)*!,
where +1 represents a conjugate pair of zeros, and —1 represents a conjugate
pair of poles. The gain of this block for a frequency w is given by

|Gi(jw)| = |8* + 2Cwps + w?|*F!

= |(wy —w?) + j20ww,| ™

= (w2 — @) + (2wwn)?
Gi(jw)|dB = £20log /(w2 — w?)? + (2(ww,)?dB (7.10)

And, the phase addition is given by

(7.11)

/Gyi(jw) = £tan™! ( 2w )

w2 — w?
From (7.10), the gain for 0 rad/s and that for w, rad/s can be calculated as
follows.

|G;(70)[dB = 420log/w? + 02dB
= =+40logw,dB (7.12)

|Gi(jwn)|dB = £20log /02 + (2¢w?)2dB
= +20log2¢w3dB
= +(40logw, + 201log2¢)dB
= 440logw,dB £ 20log2(dB (7.13)

From (7.12) and (7.13), the gain change as frequency increases from Orad/s
to wyrad/s is 20log 2¢dB. This gain is an amplification for a conjugate pair
of poles, whereas it is an attenuation for a pair of conjugate poles. Following
MatLab code draws the gain and phase plots for a conjugate pair of zeros
or poles.

% Bode plots of a second order block

zeta=0.1;

wn=10;

% sys=tf([1 2*zeta*wn wn*wn],[1]); % for a pair of zeros
sys=tf([1], [1 2*zeta*wn*wn]); % for a pair of poles
bode(sys); grid on;
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The frequency responses drawn by the above MatLab code are illustrated in
Figure 7.4, which shows the gain and phase addition for the second order
block (5% + 2s + 100)*!, where w,, = 10rad/s and ¢ = 0.1. The gain change
when frequency increases to w = 10rad/s is 20log2 x 0.1 ~ 14dB.
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Bode Diagram
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Figure 7.4: Gain and phase plots (a) for a conjugate pair of zeros (s? + 2s +
100), and (b) for conjugate pair of poles (52 + 2s + 100)~!
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7.2 Phase Margin and Gain Margin

The total phase change that any frequency undergoes within the forward
path of the plant should not be 180. The phase change of 180 is the same as
inverting the sinusoidal signal, and when this inverted signal is negatively fed
back, it turns out to a positive feedback. However, if the gain at 180 is less
than 1 the signal will die out in magnitude in successive feedback. Therefore,
system will maintain stability with respect to that frequency. The additional
gain that frequency can accept before it becomes unstable is called as gain
margin.

When the overall gain of any frequency is unity, the phase change should
not be 180 to maintain stability. The additional phase away from 180 of
the frequency, which has unity gain is called the phase margin. Figure 7.5
illustrates the gain margin and phase margin of a plant. The plant has unity
gain (0dB) at 0.414 rad/s, and at that frequency the total phase change is
28.2 away from 180 unstable limit. Similarly, the plant shows 180 phase
change at 0.671rad/s, and at this frequency the gain is lower than unity so
that it can accept an additional gain up to 8.53 before stability is affected.

Gain Margin and Phase Maegin

20
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. Closed Loop Stable? Yes . .

Magnitude (dB)

© . System: untitled1
.. Phase Margin (deg): 28.2
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Figure 7.5: Gain margin and phase margin
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7.3 Example: Servo Controller Design

A plant is modeled by the transfer function

3(s+3)
(s+4)(s?+ 3s +20)

G(s) = (7.14)

1. Determine frequency response of the plant in terms of gain and phase
plots

2. Design a compensator to increase bandwidth to 20rad/s and overall
phase margin to 45°

3. Design a compensator to maintain the unit step steady state error
within 0.01

Design Procedure
The following MatLab code will draw gain and phase plots as shown in
Fig.7.6. The code also calculates the gain and phase at 20[rad/s|.

numG=3%[1 3];

denG=conv([1 4],[1 3 20]);

G=tf (numG, denG) ;

bode(G); grid on;

[gainG,phaseG]l=bode(G,20) % gain and phase at 20[rad/s]

Bandwidth Adjustment

From the gain response of Fig. 7.6, the gain at 20 rad/s is -42.2dB. The gain
response can be lifted up by introducing a forward gain K so that the gain
at 20 rad/s become 0dB. Therefore, the value for K can be calculated as
follows.

K|G(jw)|w=2o = 1
3(j20 + 3)
(720 4+ 4)(—202 4 3 x 520 + 20)
K x0.0077 = 1
K = 1293

1

The value of K can also be calculated using the gain response in Fig.7.6,
where -42.2dB is the gain for 20[rad/s]. In order to achieve 0dB at this
frequency 20log K — 42.2dB = 0dB. Therefore, K = 10%>%/%0 x~ 129. With



112 Servo Controller Design

Bode Diagram
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Figure 7.6: Gain and phase plots of G/(jw)

K =129.3. Introduction of K does not have any phase contribution as it is
a real quantity. The gain and phase responses after introduction of K are
shown in Fig.7.7. These responses are drawn by developing that MatLab

code as follows.

numG=3*[1 3];

denG=conv([1 4],[1 3 20]);

G=tf (numG,denG) ;

bode(G); grid on;

[gainG,phaseG]=bode(G,20) % gain and phase at 20[rad/s]
% Bandwidth Adjustment

K=1/gainG

G1=K*G

bode(Gl); grid on; hold on;

According to Fig.7.7, after introduction of K = 129, the gain response has
been shifted up while phase response remains unchanged.
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Bode Diagram
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Figure 7.7: Gain and phase response of bandwidth adjusted system KG(jw)

Phase Margin Adjustment
The phase addition at 20[rad/s| can be calculated as follows

[G(jw)wo = £(320+3) — £(520 + 4) — £(20* + 3 x 520 + 20)
= /(520 +3) — /(520 + 4) — /(j60 — 380)

20 20 60
— -1 (=) -1 (=YY (U B
tan ( 3 ) tan ( 4 > {180 tan (380) }
= —168°

Phase addition can directly be read from the phase response shown in Fig.7.7,
where it is indicated as -168° at 20[rad/s]. Therefore, the phase margin is
only 12°which is not adequate. A lead compensator is introduced in order
to add phase to the plant so that phase margin can be improved to 45°. The
required phase contribution ¢;. = 33° of the lead compensator at 20 rad/s is

calculated as follows.

LG(520) + ¢pe — PM = —180°
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de = —180+ PM — (LG(520))
= —180° 4+ 45° — (—168°)
= 33°
The lead compensator Eji;f;, Ple > Ze is shown in Fig.7.8.
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Figure 7.8: Phase lead of the lead compensator for frequency w

The phase contribution ¢.(w) of the lead compensator is

Pre(w) = ¢.— &
Pre(w) = tan™! <i> — tan~! <i> (7.15)

Zle Pie

Referring to Fig.7.8 and (7.15), the phase contribution of the lead compen-
sator diminishes when w — {0, 00} as shown below.

lim, ope(w) = 0°—02=0

limy, eotre(w) = 90°—90° =0 (7.16)
In between these two limits phase contribution increases to a maximum and
then decreases. The locations of pole and zero of the lead compensator de-

cides the frequency w,,,. as shown in (7.17) at which the phase contribution
Is maximum.

w¢maz = V Zleple (717)

From (7.15) and (7.17) for maximum phase contribution

¢max . tan_l (\/ ZlePle) B tan_l (\/ Zleple>

Zle DPle

L (w A
— tan! <M> ~tan~! <_e>
Zle Wmazx
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In order to have maximum phase of 33° at 20 rad/s

20 Z]
33% = tan~! (—)—t -1 (—) 7.18
an - an | o (7.18)

The numerical solution of (7.18) is 2z, &~ 10.8. Then, the pole of the lead
compensator is pj. = (20?/2;.) = 37. The required lead compensator is

(s 4+ 10.8)
(s +37)
The lead compensator should not change the unity gain at 20 rad/s, which

has already been designed. Therefore, lead compensator gain at 20 rad/s
should be adjusted to unity using another gain K. as follows.

C’le(S) = Kle (719)

(s + 10.8)‘
(s +37)
% V202 4+ 10.82

|Cle(]20)| = Kle'

1 = K YT
T /202 + 372
1 = K,0.54
185 = K,

Figure 7.9 shows the frequency response of the lead compensator, and
the controlled plant is shown in Fig.7.10. Following MatLab code draws
Fig.7.11, the gain and phase responses of the controlled plant.

numG=3%[1 3];

denG=conv([1 4],[1 3 20]);

G=tf (numG,denG) ;

bode(G); grid on;

[gainG,phaseG]=bode(G,20) % gain and phase at 20[rad/s]
% Bandwidth Adjustment

K=1/gainG

G1=K*G

bode(G1); grid on; hold on;

% Lead compensator z=10.8; p=20%/z; lead compensator pole and
Zero

CLe=tf([1 z],[1 pl);

[gainLe,phaselLe]=bode(CLe,20) ;

KLe=1/gainLe;

G2=KLe*CLex*G1;
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Bode Diagram
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Figure 7.9: Gain and phase responses of the lead compensator

bode(G2) grid on;

z=10.8; p=20%/z; lead compensator pole and zero
CLe=tf([1 z],[1 pl);
[gainLe,phasele]=bode(CLe,20) ;

KLe=1/gainle;

G2=KLex*CLex*G1;

bode(G2) grid on;

tead

compeansator piant

| 1.85(s+10.8) 3(s+3) Y(s)

{s+37) {s+4){s2+35+20),

Figure 7.10: The controlled plant for 20[rad/s| bandwidth and 45° phase
margin
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Bode Diagram

: System: G2
- Frequency (rad/sec): 20

Magnitude (dB)

. Magnitude (dB): -0.00769 -

i System: G2
Frequency (rad/sec): 20

* Phase (deg): -135

[ . . v

Frequency (rad/sec)

Figure 7.11: Gain and phase responses of the controlled plant for 20[rad/s]
bandwidth and 45° phase margin
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Steady State Error Adjustment
The error signal of the controlled plant in Fig.7.10 is as follows.

E(s) = R(s)—=Y(s)
= R(s) — E(s)Cie(s)KG(s)

Be) = Tramram @

—

The steady state error eg; = lim; ,.e(t). And, using final value theorem
(3.42), the steady state error for unit step input R(s) = 1/s can be deter-
mined as follows.

ess = limg ,0sE(s)

_ 1

— e O () K G(s)

= lim L

- s—0

1‘8?512;?'8) 129.3 (sﬁgﬁm)
1

1+1047

= 0.087 (7.20)
This error is unacceptable because it is more than the specified limit of
0.01. Therefore, a lag compensator Cj,(s) = ziﬁ; Pia > Z1q is introduced to

improve the DCG of the plant. With the lag compensator, F(s) will change
as follows.

1
14 Cla(s)Cle(s) KG(s)
1

(s+21,) 1.85(s+10.8) 3(s+3)
1+ (S+pia) (s+37) 129'3(52+3s+20)
1
S+21q
1+ (0,47
Dla

Dia + 10'47zla

In order to meet egs = 0.01,
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Pia

pla+10.47zla = 001
Za 0.99
ne  0.1047
= 0.46 (7.21)

This expression dictates only the proportion between pole and zero, thus,
the actual locations can be freely selected based on other concerns. It is
possible to have both pole and zero close to the origin (low frequency re-
sponse), or farther away (high frequency response). Actual locations of them
will affect frequency response only locally. In this view, both pole and zero
should be located closer to the origin so that lag compensator does not cause
significant changes in frequency response around the 20rad/s, the bandwidth
frequency of the plant. Assuming p;, = 0.1, the zero is z;, = 0.95 from (7.21).
Therefore, the lag compensator is

(s +0.95)
(s+0.1)

The frequency response of the lag compensator is shown in Fig.7.12, and
the complete control system is shown in Fig. 7.13.

Cla(s) = (7.22)

The following MatLab code includes all the design steps of the servo
controller design. And, it draws the frequency responses of the controlled
plant in each design step as shown in Fig.7.14.

% Bode Design
PM=45; ess=0.01; % Design specifications

numG=3%[1 3];

denG=conv([1 4],[1 3 20]);

G=tf (numG,denG) ; % System transfer function
bode(G); grid on; hold on;% draw Bode plots

% BW adjustment using gain

[gainG,phaseG]=bode(G,20) % gain and phase at 20[rad/s]
K=1/gainG % required gain to increase BW to 20[rad/s]
G1=Kx*G; % BW adjusted system

bode(G1); grid om; hold on; % draw Bode plots
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Bode Diagram

Magnitude (dB)

Phase (deg)

Frequency (rad/sec)

Figure 7.12: Frequency response of the lag compensator

% PM adjustment using a lead compensator
phi=PM-(180+phase)

% manual calculation: phi=atan(20/z)-atan(z/20) =; find 2=10.8

z=10.8; p=(20/sqrt(z))2 % lead compensator pole and zero

CLe=tf([1 z1,[1 pl); % lead compensator transfer function
[gainLe,phaselLe]l=bode(CLe,20) % gain and phase of the lead at 20[rad/s]

KLe=1/gainLe % adjusts lead compensator gain=1 at 20 [rad/s]

G2=KLex*CLe*G1; % lead compensated system
bode(G2); grid on; hold on; % draw Bode plots

| (rm—
1. 85(5*10 8) 3(s+3) ¥is)
{s+37} {s+4}{s?+3s5+20)

Figure 7.13: The controlled plant for 20[rad/s| bandwidth, 45" phase margin,
and egs = 0.01
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% Steady state error adjustment by a lag compensator
% manual calculation: use lag CLa=(s+z)/(s+p)

% evaluate E=1/(1+CLaG?2)

% and find z/p>9.46

p=0.1; z=9.5%p; % lag compensator pole and zero
CLa=tf([1 z],[1 pl); % lag compensator transfer function
G3=CLax*G2; % Complete control system

bode (G3) ; % draw Bode plots

Bode Diagram

Magnitude (dB)

Phase (deg)

- G.Gp

"' Frequency; {Fad/sec)

Figure 7.14: Frequency response of the controlled plant for 20[rad/s] band-
width, 45° phase margin, and ezs = 0.01

Simulation The controlled plant in Fig. 7.14 can be build using MatLab
Simulink as shown in Fig.7.15, in that three sinusoidal frequency com-
ponents are used to synthesize the reference input. This Simulink plant
can be run using the following Matlab code. This Matlab code creates the
multi frequency reference input signal and excite the controlled plant with it.
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Reference
input
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§Ready 100% ‘odeds o

Figure 7.15: Controlled plant build in Matlab Simulink. Reference input is
synthesized using three sinusoidals

% Reference input componants

al=1; omegal=2; phil=0; bl=0; % signal 1 attributes
a2=1; omega2=4; phi2=0.5; b2=0.1; % signal 2 attributes
a3=1; omega3=6; phi3=-1.0; b3=-0.2; % signal 3 attributes

sim BodeExSim; % calls simulink block

plot(tout,yout,’b’,tout,rin,’r-="); % draw r(t) and y(t)
xlabel(’time[s]’); ylabel(’r(t) and y(t)’); grid on;
legend(’y(t)’,’r(t)’); % add legend to graph

In this code BodeExSim is the simulink plant. Reference input is synthe-
sized by adding three sinusoidals as r(t) = X3_ a;sinw;t + ¢; + b;, in that
their amplitudes, frequencies, phases, and biases can be specified in the
MatLab code. The tracking response of the plant for low a frequency refer-
ence r(t) = [1.sint]4[1. sin (3t 4+ 0.5)]+[1. sin (6¢ — 1.0)] is shown in Fig.7.16.
In this result, the reference starts at -3.5, whereas the response start at 0.
However, the response is able to closely track the reference. Very accurate
tracking response cannot be expected because the controlled plant has a lower
bandwidth of 20 rad/s, or 3.18Hz, and the lag compensator introduces a sub-
stantial phase distortion within this low bandwidth. More accurate tracking
response can be achieved for a higher bandwidth designs.

Figure 7.17 shows the tracking response when high frequency components
present in the reference input given by r(¢) = [1. sin 8t] 4 [1. sin (10t + 0.5)] +
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[1.sin (12¢ — 1.0)]. In this result, tracking performance has been deteriorated
to some extent due to frequency attenuation closer to 20 rad/s. The time
delay in feedback is also more prominent. Nevertheless, if time delay between
reference and response is disregarded, the response still tracks the reference
somewhat satisfactorily. If the reference input consists of even higher fre-
quencies beyond 20 rad/s, the tracking performance will deteriorate beyond
acceptable level.

time[s]

Figure 7.16: Tracking response of the controlled plant for a time-varying
reference which contain 1[rad/s], 3[rad/s], and 5[rad/s] frequency components

y(t)

» ; ; ; . ;

time[s]

Figure 7.17: Tracking response of the servo system for a time-varying refer-
ence which contain 8[rad/s|, 10[rad/s|, and 12[rad/s] frequency components

A good collection of examples on servo system design using frequency re-
sponse is available in [9].
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7.4 Summary

In control application areas such as mechatronics and robotics, the actuators
are given time-varying position references (e.g. knee joint motor of a bipedal
walking robot). The control systems of these actuators should be designed
in order to be able to track these reference inputs quickly and accurately.
These controllers are known as servo controllers and they are designed in fre-
quency domain. The technique used in servo controller design is procedure
of few steps. First, system bandwidth is adjusted using a forward gain. After
that, appropriate compensators are designed based on spefified performance
requirements. Lead and lag compensators are usually employed in seper-
ate frequency localities in order to shape up the overall frequency response.
The entire servo controller can be designed and simulated in MatLab and
SImulink. Accurate tracking response must be achieved in simulation before
fabrication and implementation of the servo controllers. The actual indus-
trial servo controller are more complex than what is presented here, and they
achieve greater tracking performance by way of feedforwarding the velocity
and acceleration of the reference input.



